

CITY OF PRIEST RIVER PLANNING AND ZONING DEPARTMENT

MEMORANDUM

To:

Bonner County Board of County Commissioners and Planning Department

From:

Jeff Connolly, Mayor

Jake Gabell, Planning and Zoning Administrator

Subject:

Area of Impact Proposal, Idaho Code 67-6526

Date:

10/06/2025

Attachments:

Proposed Priest River AOI Map

Annexation Map (2015–2025, updated)

Priest River Zoning Map

• Utility Capacity Analysis (2021)

Introduction

The revisions to Idaho Code §67-6526, approved via Senate Bill 1403 during the 2024 Idaho legislative session, requires each city to submit a revised Area of Impact (AOI) proposal and hold a hearing with the Board of County Commissioners by the end of 2025. Attached to this memo is the proposed Area of Impact map along with the City's water and sewer infrastructure maps.

This memorandum evaluates Priest River's AOI proposal against the statutory criteria and demonstrates why the city is best positioned to have some measure of influence on density and uses within the proposed AOI boundary.

Statutory Framework

When establishing an Area of Impact, Idaho Code §67-6526(4) requires consideration of:

- 1. Anticipated commercial and residential growth
- 2. Geographic factors
- 3. Transportation infrastructure and systems, including connectivity
- 4. Areas where municipal or public sewer and water are expected to be provided within five years
- 5. Other public service district boundaries
- 6. Two-mile limit
- 7. Five-year annexation likelihood

Evaluation of Standards

1. Anticipated Commercial and Residential Growth

Priest River is already experiencing steady population growth. The City's Transportation Plan (2024), prepared by Welch-Comer, identifies population increases that require long-term land use and infrastructure planning. Section three of this report estimates a 2% annual growth rate, with an estimated population of between 2,350 and 2,550 by the year 2030.

Unlike the County, which has limited urban services, the City has the infrastructure, either in place or planned, to meet this demand. The legislative changes proposed by the County Planning Commission would add more restrictive provisions to the County's subdivision ordinance and further shift housing demand toward municipalities.

Additionally, the City has received several grants in the past few years to revitalize the downtown area. This has brought in new businesses, with more either planned or having room to grow. While commercial space is available, the City anticipates these areas to build out with the increased residential demand.

2. Geographic Factors

Priest River is uniquely defined by its two rivers, the Priest River and the Pend Oreille River. These geographic features create natural service boundaries but do not limit growth, as the City has extended both water and sewer across the Priest River and water across the Pend Oreille River. The City's Comprehensive Plan (2013) emphasizes preserving the integrity of these natural systems while ensuring service areas remain connected.

Additionally, there are mountainous, sloped areas south and further north of the City, none of which abut or are included in the proposed AOI. There is ample room for long-range planning for the City to grow over the next century.

3. Transportation Infrastructure and Systems, Including Connectivity

The 2024 Transportation Plan identifies critical projects needed to support growth and maintain safety. High-priority investments include:

- Realign Larch and Maple Streets for improved US-2 access (which was completed during the summer of 2025)
- Widen SH-57 to accommodate increased traffic
- Complete sidewalk infill along US-2, in partnership with ITD
- Install RRFB pedestrian crossings at US-2/Larch and US-2/Treat

These projects reflect the City's commitment to coordinated land use and transportation planning within the city limits. As the City grows and annexes additional lands into the AOI, the transportation infrastructure will expand as well.

4. Areas Where Sewer and Water Service Are Expected Within Five Years

The 2021 Utility Capacity Analysis demonstrates that Priest River has both water and sewer capacity available today and the ability to expand further as growth occurs.

Current water capacity allows for an additional 900 ERUs (equivalent residential units), with current connections around 1,500 ERUs. Current sewer capacity allows for an additional 964 ERUs, with current connections around 1,750. Since 2021 Utility Capacity report was finalized there has been significant development throughout the City and the current availabilities are as such: 666 water ERUs, and 498 sewer ERUs. The City also has identified expansion projects to increase capacity as demand requires, ensuring compliance with five-year service expectations.

Priest River is one of only three cities in Bonner County that fully owns and operates both its water and sewer treatment plants. This independence allows the City to manage its growth trajectory without reliance on outside service providers. Over the past decade, the City has also invested in system modernization, ensuring resilience to both regulatory changes and technological demands.

The proposed AOI should reflect these capacity realities. By contrast, allowing high-density or commercial/industrial uses under County zoning near City boundaries strips away incentives for annexation and undermines the City's investment in regional infrastructure.

5. Other Public Service District Boundaries

Where possible, the AOI should align with existing school district, fire protection district, and utility service boundaries. Alignment reduces jurisdictional overlap and confusion. As proposed, there are no regulatory overlaps with any other city AOI, school district, or fire district. There is a proposed overlap on the south side of the Pend Oreille River with the South Pend Oreille Sewer District. The City only offers water service in this area, and if sewer is extended, the City will coordinate with the district on boundary realignments, if necessary.

6. Two-Mile Limit

The statute requires that AOIs not extend more than two miles from city limits, except to encompass entire county-recognized parcels.

The City's AOI proposal does not extend beyond two miles of the city limits.

7. Five-Year Annexation Likelihood

This is the most critical and contested standard in Idaho Code §67-6526(4). The statute is clear: the AOI may not exceed areas "very likely to be annexed within the next five years."

Priest River is demonstrably the most active city in Bonner County in annexing property. The attached Annexation Map shows annexations over the past ten years, although it does not yet reflect the four-acre parcel annexed in 2025 on the City's north end. This consistent annexation history demonstrates that Priest River has both the political will and the infrastructure capacity to grow.

Priest River is also well prepared to accommodate annexation in the next five years. The City owns and operates its water and sewer treatment plants, giving it complete control over growth management. As previously stated, the City has sufficient available

ERU capacity. This capacity is available to support both infill development and annexations during the next five years. The City has invested heavily in upgrading and expanding infrastructure to keep pace with both technology and demand.

In addition, recent changes proposed by the Planning Commission to County subdivision ordinances will further restrict rural development opportunities, shifting demand to municipalities. As growth pressures increase, developers will look to cities with capacity, service certainty, and clear planning frameworks. Priest River will be a very likely recipient of this growth.

Priest River is poised for growth with its proven annexation record, control over water and sewer systems, and documented pressure of residential demand. The proposed AOI therefore meets, and indeed exemplifies, the statutory test of being 'very likely' to be annexed within the next five years.

Conclusion

The City respectfully requests that the Board of County Commissioners recognize the City's demonstrated annexation history and utility capacity as proof of compliance with the five-year annexation likelihood standard and adopt the attached AOI map consistent with Priest River's proposal.

If the Board of County Commissioners does not accept all portions of the City's proposed AOI, we respectfully request that the Board not remand the file back to the City for further revision but instead exercise its authority to modify the proposal or adopt in part.

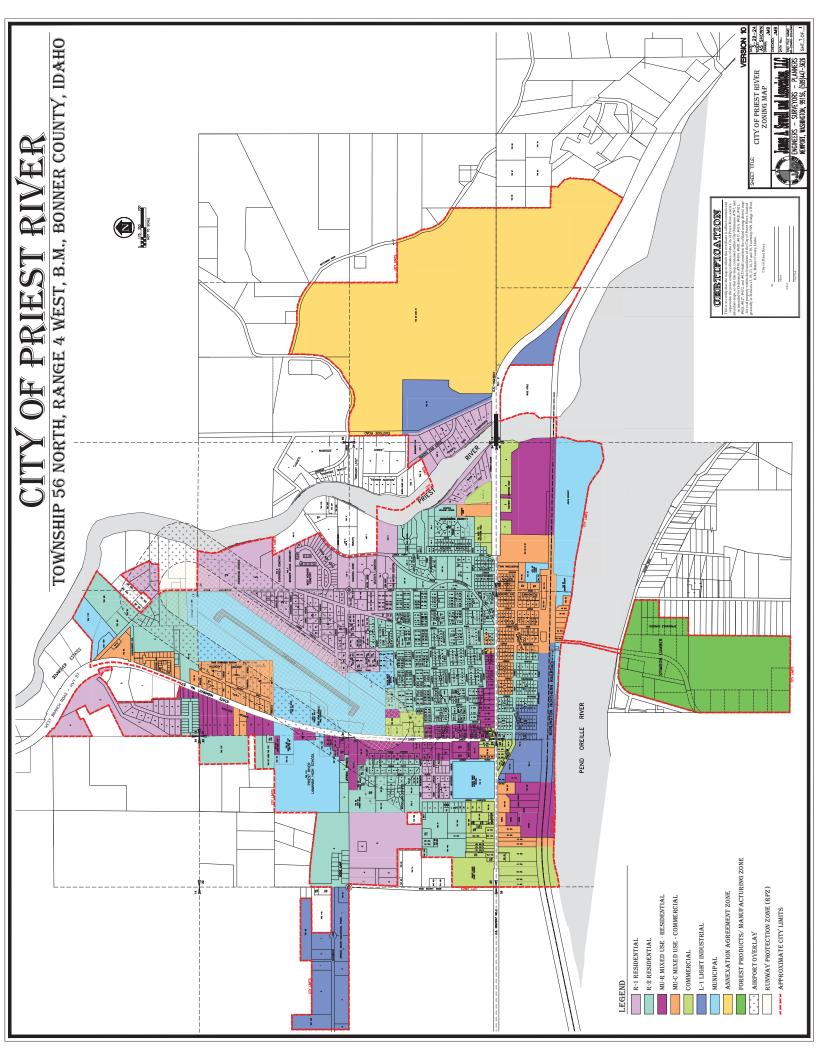
Given the statutory requirement to finalize AOI boundaries by the end of 2025, there is limited time remaining to allow for a back-and-forth revision process between the City and County. A remand would risk missing the legislatively mandated deadline. By making modifications directly and adopting the revised map, the Board ensures statutory compliance and provides certainty for both the City and County moving forward.

Prepared by:

Jake Gabell, Planning and Zoning Administrator

Approved by:

Jeff **Ø**nnolly, **M**ayor


Bonner County Map

Priest River City Annexations

Parents of Combined Parcels

Parcels

0: 208-664-9382 F: 208-664-5946

330 E. Lakeside Avenue, Suite 101 Coeur d'Alene, ID 83814

Memorandum

TO: MAYOR JIM MARTIN AND CITY COUNCIL MEMBERS

FROM: ASHLEY WILLIAMS, P.E.

PRJ. #: 14778.26

SUBJECT: CITY UTILITY CAPACITY ANALYSIS

DATE: OCTOBER 11, 2021

CC: REX ROLICHECK, LAUREL THOMAS

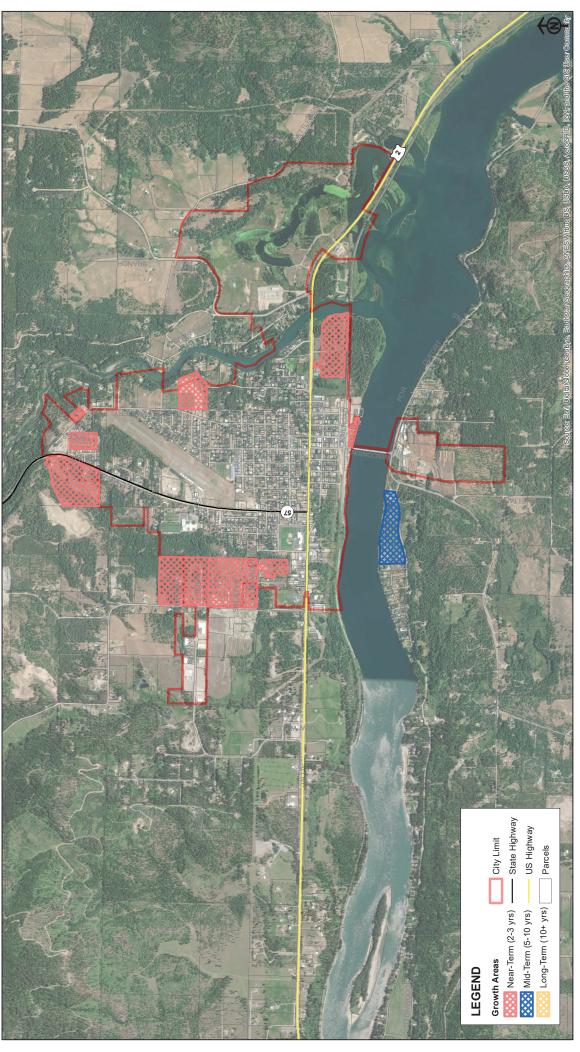
6259

POR 10/(1/Z/ O CO)

M. WILLIAM

The purpose of this memorandum is to summarize the utility capacity analysis conducted for the City's water and sewer system.

1. Background

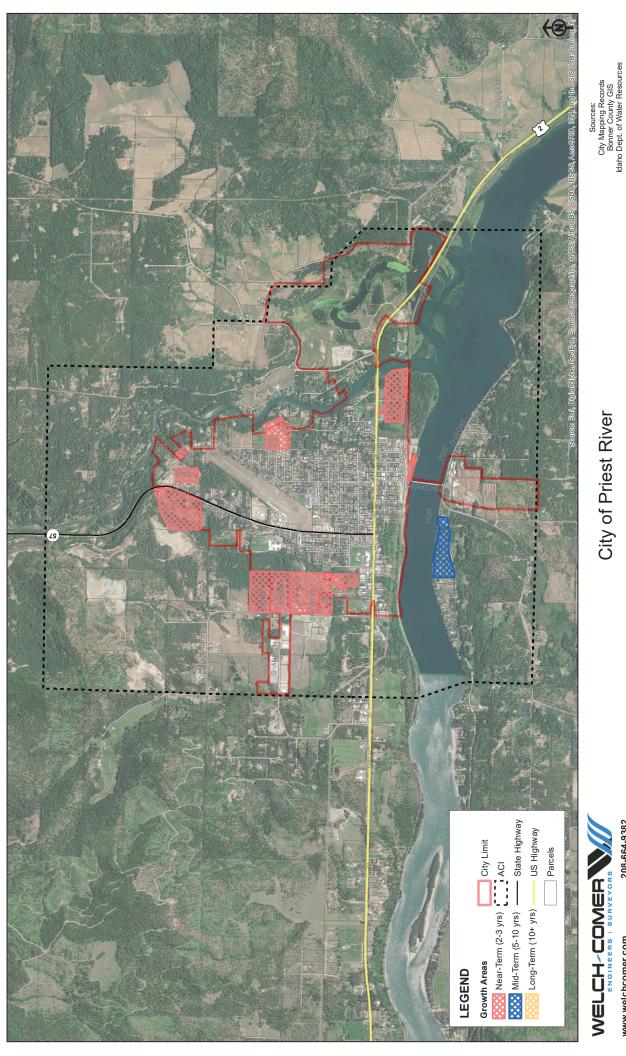

The City owns and operates a water and sewer system to serve the City's residents and commercial entities. Various planning documents (facility plans and addendums) have been completed over the years. However, the rising growth and demand within the City has increased the need to have a comprehensive view of the remaining utility capacity to serve new connections. The most recent planning documents are as follows:

- Water: Water System Master Plan Addendum No. 5, prepared by Welch Comer Engineers (dated September 2020). This document will be referred to as the WMPA 5. Previous documents and Addendums are described below.
 - o Water System Master Plan, prepared by JUB Engineers (dated October 2007)
 - Addendum No. 1-3, prepared by Welch Comer Engineers (dated January, May and November 2009)
 - Addendum No. 4, prepared by Welch Comer Engineers (dated June 2010)
- Sewer: Wastewater Facility Plan, prepared by Mountain Waterworks (dated April 2016). This
 document will be referred to as WWFP.

The City's water and sewer systems are regulated by the Idaho Department of Environmental Quality (IDEQ). Capacity analysis was conducted in accordance with current IDEQ Rules for Public Drinking Water Systems and Wastewater Systems.

2. Anticipated Growth Areas

The City has been approached by several developers for various areas within the City regarding future subdivisions or development. These have been classified into the following: near-term (2-3 years), midterm (5-10 years), and long-term (10+ years), which are identified on Figure 2-1 and are based on preliminary understanding of the developers' plans and projections. The City anticipates near-term growth in several locations throughout the City, primarily in the northwestern portion. The City has also been approached by a developer south of the Pend Oreille River; this is not anticipated until mid-term growth. The City has not currently identified any long-term growth (10+ years). The City's Area of City Impact (ACI) is also an area that may be included within the City limits at some point in the future. This is shown on Figure 2-2; it is important to note the City is currently negotiating this boundary with the County and as such is subject to change.



www.welchcomer.com

City of Priest River

Figure 2-1 - Anticipated Growth Areas

City of Priest River

Figure 2-2 - Anticipated Growth Areas (with ACI)

.....4V78.26AWServiceArea&GrowthACl717/21

PROJECT NO....
DRAWN BY.
FILENAME.
DATE.

3. Water Capacity

3.1. Background

The City's water system consists of a raw water intake withdrawing water from the Pend Oreille River, which is treated through rapid sand filtration system. The finished water pumps deliver water to the City's main reservoir, which provides water to the general pressure zone by gravity. Water is pumped from this general pressure zone through the Upper Booster Station to the upper pressure zone and to the Industrial/Shannon Lane Standpipe. The Standpipe provides service to the upper pressure zone. Figure 3-1 provides a water system overview.

The City is in the process of replacing the main reservoir due to structural conditions. The new reservoir's capacity is reflected in Section 3.3. The City also completed several water system improvements through a revenue bond in 2009.

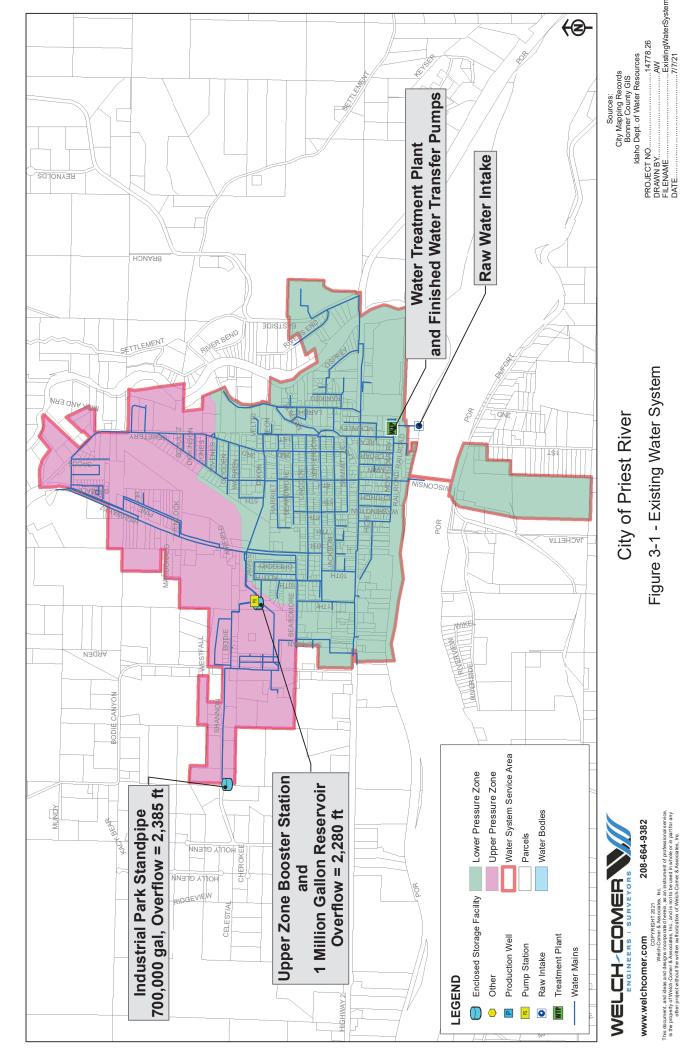


Figure 3-1 - Existing Water System

ODPYRIGHT 2028.
Welch Comer & Associates, Inc.
This abcument, and ideas and designs incorporate foreign is an intument of professional service, is the property of Verd-Comer & Associates, Inc., and no other property of Verd-Comer & Associates, Inc., and other Comer & Associates, Inc., and other Comer & Associates, Inc., and other property without the written authorization of Nebris Comer & Associates, Inc.

3.2. Flows and Connections

The current active connections served by the system (as of 2020) is 863. The estimated equivalent dwelling units (developed in the WMPA 5, based on 2017) is 1,162. Based on the assumptions made in the WMPA 5, the estimated number of EDUs in the Lower Zone is 958 and 240 in the Upper Zone¹.

The water treatment plant produced approximately 160.9 million gallons and the metered usage was approximately 65.5 million gallons in 2019. It is important to note the backwash and filter to waste lines are not metered separately. This is likely accounting for the significant difference between the production and consumption. The City is reviewing the metering at the WTP to more accurately account for these two uses (backwash and filter to waste).

The estimated flows per EDU are as follows (from the WMPA 5, based on 2017 data):

Average Day: 288 gpd/EDU

Peak Day: 834 gpd/EDU

Peak Hour: 1.04 gpm/EDU

3.3. Current Facility Capacity

3.3.1. Water Treatment Plant

The raw water pumps and filter capacity are both 2,100 gallons per minute (gpm). This is equivalent, based on current demands, to approximately 2,104 EDUs. The estimated remaining EDUs is 906 (assuming connections added after 2017 were residential).

3.3.2. Storage

The WMPA 5 shows the storage capacity for the new reservoir (440,000 gallons), with the ability to serve approximately 2,104 EDUs (1,686 EDUs in the Lower Zone). The Industrial/Shannon Lane Standpipe has a 50,000-gallon surplus which can be allocated to standby storage² or fire suppression storage³ in the upper pressure zone.

3.3.3. Upper Booster Station

The WMPA 5 identified improvements needed at the Upper Booster Station related to depreciation and condition. The booster pumps were identified to be replaced. The WMPA 5 estimated (2) 200 gpm boosters on variable frequency drives would be sufficient for growth to 2038, serving a total of 318 EDUs in the upper pressure zone. Growth in the upper pressure zone beyond what was projected will require these pumps to be upsized to account for additional demand.

3.3.4. Summary and Trigger Points

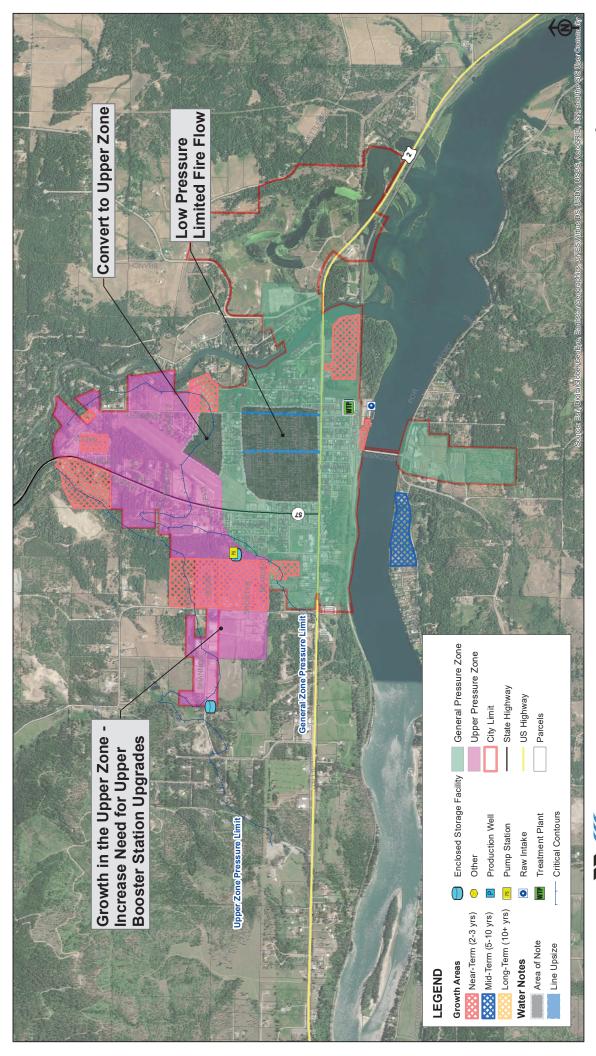
Based on the capacities identified above, the following trigger points to reevaluate for treatment capacity should be monitored by the City:

- Number of Connections: approximately 1,502⁴
- Estimated Year: 2050
- Eighty Percent (80%) Plant Capacity: 1,680 gpm (peak hour flow)

It is important to monitor the growth and capacity in the main pressure zone and the upper pressure zone with respect to the Upper Booster Station and the Storage facilities. Refer to Section 3.3.2 and 3.3.3 for discussions of these capacities.

¹ Estimated 80% Lower Zone and 20% Upper Zone connections. Assume 36 added connections since 2017 follows this ratio.

² Standby Storage refers to storage needed in the event that one or more of the water system's sources fail and standby power is not available, or if unusual conditions impose higher demands than anticipated. It is calculated based on 8 hours of operation at average day demand.


³ Fire Suppression requirements are set by the local fire authority and consist of a required fire flow rate and duration.

⁴ Based on average ratio of connections to EDUs identified in WMPA 5, (1,162 EDUs ÷ 827 connections = 1.4)

3.4. Areas of Concern

The areas of concern for the water system were developed based on the recommendations from the WMPA 5 and review with the City staff and operators. These areas are shown in Figure 3-2 and consist of the following:

- Growth in the upper pressure zone will increase the need for the Upper Booster Station upgrades and will require pump upsize.
- There is a section in the general pressure zone with low service pressure and limited fire flow. Line size upgrades for the main north/south lines are shown.
- The City is also working to convert a small area on the border of the general pressure zone and upper pressure zone to increase service pressure.

City of Priest River

Figure 3-2 - Areas of Concern (Water)

....14778.26AWWaterSystemConcern ...7/7/21 PROJECT NO...
DRAWN BY.....
FILENAME.....

Sources:
City Mapping Records
Bonner County GIS
Idaho Dept. of Water Resources

4. Sewer Capacity

4.1. Background

The City's sewer system consists of a sanitary sewer collection system throughout the City, with three lift stations (James, Highway 2, and Larch). The sewer is treated at the City's wastewater treatment plant (WWTP), located near the Pend Oreille River. The City discharges treated water to the Pend Oreille River, through a discharge permit authorized and monitored by the IDEQ. Figure 4-1 provides a sewer system overview.

The City completed several sewer system improvements through a revenue bond passed in 2015.

4.2. Flows and Connections

The current active connections served by the system (as of 2020) is 759. The estimated population equivalent is 1,973 people. The estimated equivalent dwelling units (based on current City estimate) is 964.

The WWTP received approximately 67.89 million gallons in 2020, with an average of 0.19 million gallons per day and 0.301 million gallons on the maximum day. The estimated flows per EDU are as follows (based on 2020 data):

 Average Day: 192 gpd/EDU Peak Day: 312 gpd/EDU Peak Hour: 659 gpd/EDU5

4.3. Current Facility Capacity

4.3.1. Wastewater Treatment Plant

The WWTP is rated for 1.5 million gallons per day (peak flow), serving an estimated 3,000 future population. The WWTP has two primary bottlenecks rated for a smaller flow than the overall plant: UV disinfection (1.125 mgd) and the Secondary Clarifiers (0.65 mgd, maximum month, each). The estimated EDU capacity based on the UV disinfection capacity is 1,707 EDUs⁶. It is also important to note the City's discharge permit could change during renewal periods with IDEQ; however, the agency typically provides advance notice of any significant changes.

4.3.2. James Lift Station

This lift station was recently upgraded through the bond projects completed. This lift station serves the area with the most growth potential in the City. It consists of two 400 gpm pumps normally operating in simplex mode⁷. The pumps typically operate for approximately 30-40 minutes per day currently. The estimated existing EDUs served by the lift station (based on flows) is 469 EDUs⁸. The estimated remaining capacity based on peak hour flows is 423 EDUs. Refer to Appendix A for detailed overview of calculations.

4.3.3. Highway 2 Lift Station

This lift station was identified in the WWFP for electrical and back-up power upgrades. It serves a relatively small service area in the eastern portion of the City. It also receives waste from an RV dump station, which is not currently metered. It consists of two 450 gpm pumps normally operating in simplex mode. The pump capacity appears to be high relative to the service area for the lift station; we recommend conducting a drawdown test to confirm the pumping rate. The pumps typically operate for approximately 25 minutes per day currently. The estimated existing EDUs served by the lift station (based on flows) is 57 EDUs⁹. The estimated remaining capacity based on peak hour flows is 933 EDUs. Refer to Appendix A for detailed overview of calculations.

4.3.4. Larch Lift Station

This lift station was identified in the WWFP for electrical and back-up power upgrades. It serves a relatively small service area in the eastern portion of the City, north of Highway 2. It consists of two 40 gpm pumps normally operating in duplex mode¹⁰. The pumps typically operate for approximately 1-2 hours per day currently. The estimated existing EDUs served by the lift station

⁵ The estimated peak hour was derived using 2021 peak data to determine the peaking factor between peak day and peak hour. This is estimated to be 2.1. This value was applied to the peak day from the 2020 data to determine peak hour.

⁶ Estimated based on 1.125 mgd ÷ 659 gpd/EDU. This is estimated to be equivalent to 4,438 population (1,135 EDUs x 2.6), which is higher than the estimated population which can be served by the WWTP. This should be evaluated reviewing the flows and the treatment plants capabilities as the City approaches these limits.

⁷ Single pump operating at one time; two pumps are available for redundancy.

⁸ Estimated based on Preliminary Engineering Report prepared by Mountain Waterworks (dated August 2018). Existing flows were estimated as 309,200 gpd.

⁹ Estimated based on runtimes (25 minutes per day) and average flow per EDU.

¹⁰ Both pumps operating together.

(based on flows) is 12 EDUs¹¹. The estimated remaining capacity based on peak hour flows is 68 EDUs. Refer to Appendix A for detailed overview of calculations.

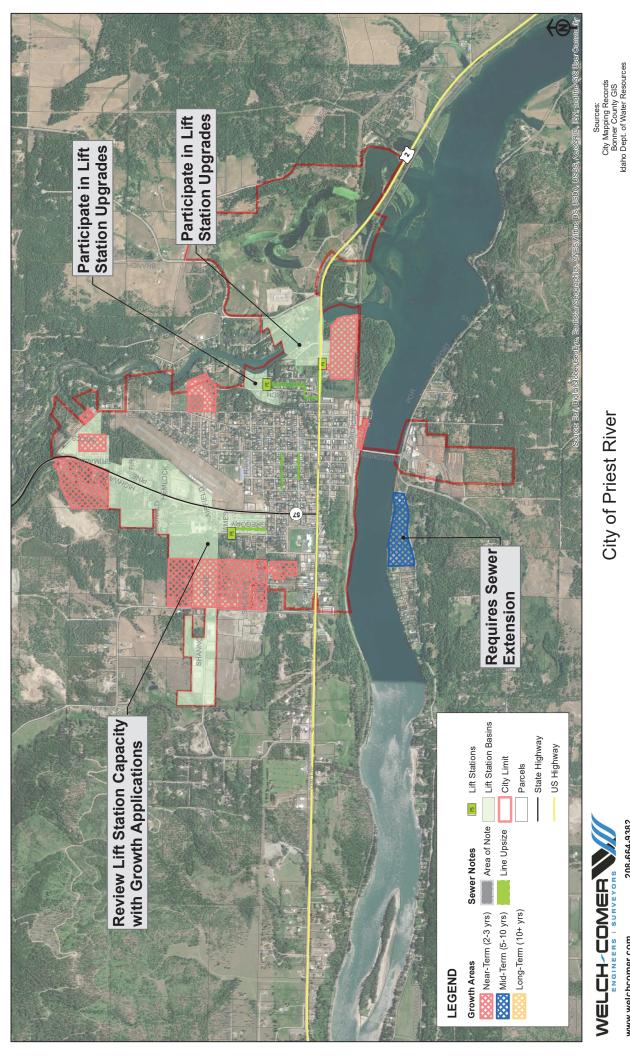
4.3.5. Summary and Trigger Points

Based on the capacities identified above, the following trigger points to reevaluate for treatment capacity should be monitored by the City:

- Number of Connections: approximately 1,750¹²
- Estimated Year: 2050
- Eighty Percent (80%) Plant Capacity: 1.2 mgd (peak flow)¹³

It is important to monitor the growth and capacity in the lift station basins as well as within the general collection system. Refer to Section 4.3.2 through 4.3.4 for discussions of these capacities.

4.4. Areas of Concern


The areas of concern for the sewer system were developed based on the recommendations from the WWFP and review with the City staff and operators. These areas are shown in Figure 4-2 and consist of the following:

- Growth in the James Lift Station basin should be monitored due to capacity at that lift station and high growth potential.
- Growth in the Larch and Highway 2 basins should participate in the upgrades identified in the WWFP as that will increase demand on the aging infrastructure.
- The growth potential identified across the Pend Oreille River will require a sewerline extension.

¹¹ Estimated based on runtimes (99 minutes per day) and average flow per EDU.

¹² Based on average ratio of connections to EDUs based on 2020 estimate, (964 EDUs ÷ 759 connections = 1.3)

¹³ Excludes bottleneck flow areas.

City of Priest River

Figure 4-2 - Areas of Concern (Sewer)

....14778.26AWSewerSystemConcern ...7/7/21

PROJECT NO...
DRAWN BY.....
FILENAME.....

5. Summary

The City's water and sewer system have sufficient capacity, based on the analysis provided in the planning documents (WMPA 5 and WWFP) as well as further conducted and summarized in this memorandum. The City should monitor the capacities of the water and sewer treatment plants, with the identified trigger points listed above as well as localized capacity in the upper pressure zone (water) and the James Lift Station basin (sewer).

Appendix A: Lift Station Analysis

			445 ft 15.0 ft 1.5 ft 174.5 gal	40 gpm 2	15 min 5 min	99 min/day 3,960 gpd	20.7	Consistently 180 min 7,375 gal 41.0 gpm 89.6 EDUs 68.9 EDUs
		Larch Lift Station	Wet Well Diameter Total Depth Operating Volume Wet Well Operating Storage	Pump Pump Flow No. Pumps (normal op)	Total Pump Cycle at PHF Starts per Hour Pump Run Time	Estimated Current Flows Per City Staff Estimated Runtime AD	EDUs	Estimated Capacity with Pumping Consistently Pump Run Time in Peak Hour 7,375 g Vol _{out} 1100 lincoming Flow 89.6 E Additional Capacity Avail 68.9 E
						7.7 gpm		
			7 ft 16.3 ft 2 ft 575.7 gal	450 gpm 1	15 min 2 min	24.6 min/day 11,070 gpd	57.7	nsistently 81,576 gal 453.2 gpm 991.0 EDUs
0.13 gpm/EDU 0.22 gpm/EDU 0.46 gpm/EDU		Highway 2 Lift Station	Wet Well Diameter Total Depth Operating Volume Wet Well Operating Storage	<u>Pump</u> <mark>Pump Flow</mark> No. Pumps (normal op)	Total Pump Cycle at PHF Starts per Hour Pump Run Time	Estimated Current Flows Per City Staff Estimated Runtime AD	EDUs	Estimated Capacity with Pumping Consistently Pump Run Time in Peak Hour 180 Vol _{out} 81,576 Incoming Flow 45.52 Additional Capacity Avail 933.3
191.7 gpd/EDU 312.2 gpd/EDU 658.6 gpd/EDU	il storage + pump flow					53.7 gpm 214.7 gpm		
964 EDUs 184,809 gpd 301,000 gpd 634,843 gpd	3 hr Peak flow x Hr = wet well storage + pump flow		8 ft 16 ft 4 ft 1503.9 gal	400 gpm 1	15 min 4 8 min	77,300 gpd 309,200 gpd	469.5	g Consistently 180 min 73,504 gal 408.4 gpm 892.9 EDUs
AD PDF PHF	Other Assumptions Peak Occurs for $Vol_{in} = Vol_{out}$	James Lift Station	Wet Well Diameter Total Depth Operating Volume Wet Well Operating Storage	<u>Pump</u> Pump Flow No. Pumps (normal op)	Total Pump Cycle at PHF Starts per Hour Pump Run Time	Estimated Current Flows Per Mountain Water Works AD PHF	EDUS	Estimated Capacity with Pumping Consistently Pump Run Time in Peak Hour 73,504 gal Volout 73,504 gal Incoming Flow 892.9 EDB Additional Capacity Avail 423.4 EDI

System Flows (2020,2021)

2.8 gpm